Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Jundishapur Journal of Microbiology ; 15(11) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2274237

ABSTRACT

Background: The outbreak of a new coronavirus in China in 2019 (COVID-19) caused a global health crisis. Objective(s): This study was performed to investigate the effect of different underlying diseases on mortality in patients with COVID-19. Method(s): This retrospective cohort study was performed on COVID-19 patients admitted to the Shahid Rahimi and Sohada-ye Ashayer teaching hospitals in Khorramabad, Iran, from 2019 to 2021. Data on disease severity, clinical manifestations, mortality, and underlying disorders were collected and analyzed using the SPSS software version 22 at a 95% confidence interval and 0.05 sig-nificance level. Result(s): The study included 9653 men (48%) and 10332 women (52%). Patients with chronic kidney diseases, cancer, chronic obstruc-tive pulmonary disease, hypertension, cardiovascular disease, and diabetes were at higher mortality risk than those without these underlying diseases, respectively. However, there was no significant relationship between asthma and mortality. Also, age > 50 years, male gender, oxygen saturation < 93 on admission, and symptoms lasting <= 5 days were associated with increased mortality. Conclusion(s): Since patients with underlying diseases are at higher mortality risk, they should precisely follow the advice provided by health authorities and receive a complete COVID-19 vaccination series.Copyright © 2022, Author(s).

2.
Egyptian Journal of Medical Human Genetics ; 23(1), 2022.
Article in English | EMBASE | ID: covidwho-1822226

ABSTRACT

Background: As the new pandemic created by COVID-19 virus created the need of rapid acquisition of a suitable vaccine against SARS-CoV-2 to develop Immunity and to reduce the mortality, the aim of this study was to identify SARS-CoV-2 S protein and N antigenic epitopes by using immunoinformatic methods to design a vaccine against SARS-CoV-2, for which S and N protein-dependent epitopes are predicted. B cell, CTL and HTL were determined based on antigenicity, allergenicity and toxicity that were non-allergenic, non-toxic, and antigenic and were selected for the design of a multi-epitope vaccine structure. Then, in order to increase the safety of Hbd-3 and Hbd-2 as adjuvants, they were connected to the N and C terminals of the vaccine construct, respectively, with a linker. The three-dimensional structure of the structure was predicted and optimized, and its quality was evaluated. The vaccine construct was ligated to MHCI. Finally, after optimizing the codon to increase expression in E. coli K12, the vaccine construct was cloned into pET28a (+) vector. Results: Epitopes which were used in our survey were based on non-allergenic, non-toxic and antigenic. Therefore, 543-amino-acid-long multi-epitope vaccine formation was invented through linking 9 cytotoxic CTL, 5 HTL and 14 B cell epitopes with appropriate adjuvants and connectors that can control the SARS coronavirus 2 infection and could be more assessed in medical scientific researches. Conclusion: We believe that the proposed multi-epitope vaccine can effectively evoke an immune response toward SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL